How To Use This Book

Async/await is the single most valuable feature to land in the JavaScript language spec in the last
15 years. The event loop and asynchronous programming in general are exceptional for building
GUIs and servers, but callbacks make error handling tedious and code hard to read. For example,
when RisingStack asked Node.js developers what they struggled with in 2017, asynchronous
programming topped the list.

What's hardest to get right with Node.js at the moment?

@ RisingStack

6.31% 6.31%

6
5.01% 5.01% 4.82% i
° 4.45%
4.08%
3.53% 3.53%
3.15%
I I I 2I97/. 1

(531

B

w

N

-

(=]

o N & o & e o & & o %
J\OQ \}{{c\ 006\ S @ \{\Q 0{\(‘ \\003 &\(\ & (\b\ of'b\(\ .\r,@ beoo
) X Y b >
\\5{\6(\ CDQ;(' G-?'S\ di\ \}\0 «Gc, o(\\ 6)09 \‘,\\}o Q‘o o"b a\o\) Q‘O(o Qe'(\
vr? (o < ob' \s\ =) Q"\ Q &

Async/await promises to make asynchronous code as clean and easy to read as synchronous
code in most use cases. Tangled promise chains and complex user-land libraries like async can
be replaced with for loops, if statements, and try/catch blocks that even the most junior of
engineers can make sense of.

The following JavaScript from a 2012 blog post is a typical example of where code goes wrong
with callbacks. This code works, but it has a lot of error handling boilerplate and deeply nested if
statements that obfuscate the actual logic. Wrapping your mind around it takes a while, and
proper error handling means copy/pasting if (err != null) into every callback.

http://thecodebarbarian.com/80-20-guide-to-async-await-in-node.js.html
https://risingstack.com/
https://www.npmjs.com/package/async
https://www.hacksparrow.com/node-js-async-programming.html

function getWikipediaHeaders() {

fs.stat('./headers.txt', function(err, stats) {
if (err !'= null) { throw err; }
if (stats == undefined) {

var options = { host: 'www.wikipedia.org',6 port: 80 };
http.get(options, function(err, res) {

if (err != null) { throw err; }

var headers = JSON.stringify(res.headers);

fs.writeFile('./headers.txt', headers, function(err) {
if (err != null) { throw err; }
console.log('Great Success!');
3
3
} else { console.log('headers already collected'); }

).

Below is the same code using async/await, assuming that stat(), get(),and writeFile() are
properly promisified.

async function getWikipediaHeaders() {
if (await stat('./headers.txt') != null) {
console.log('headers already collected');
¥
const res = await get({ host: 'www.wikipedia.org', port: 80 });
await writeFile('./headers.txt', JSON.stringify(res.headers));
console.log('Great success!');

You might not think async/await is a big deal. You might even think async/await is a bad idea. I've
been in your shoes: when | first learned about async/await in 2013, | thought it was unnecessary
at best. But when | started working with generator-based coroutines (the 2015 predecessor to
async/await), | was shocked at how quickly server crashes due to TypeError: Cannot read
property 'x' of undefined vanished. By the time async/await became part of the JavaScript
language spec in 2017, async/await was an indispensable part of my dev practice.

Just because async/await is now officially part of JavaScript doesn't mean the world is all
sunshine and rainbows. Async/await is a new pattern that promises to make day-to-day
development work easier, but, like any pattern, you need to understand it or you'll do more harm

than good. If your async/await code is a patchwork of copy/pasted StackOverflow answers, you're
just trading callback hell for the newly minted

The purpose of this book is to take you from someone who is casually acquainted with promises
and async/await to someone who is comfortable building and debugging a complex app whose
core logic is built on async/await. This book is only 52 pages and is meant to be read in about 2
hours total. You may read it all in one sitting, but you would be better served reading one chapter
at a time, studying the exercises at the end, and getting a good night's sleep in between chapters
to really internalize the information.

This book is broken up into 4 chapters. Each chapter is 12 pages, including exercises at the end of
each chapter that highlight key lessons from the chapter. The exercises require more thought than
code and should be easy to answer within a few minutes.

The first 3 chapters are focused on promise and async/await fundamentals, and strive to avoid
frameworks and outside dependencies. In particular, the code samples and exercises are meant
to run in Node.js 8.x and will not use any transpilers like Babel.

In the interest of providing realistic examples, the code samples will use the superagent module
for making HTTP requests. The 4th chapter will discuss integrating async/await with some
common npm modules.

If you find any issues with the code samples or exercises, please report them at

Are you ready to master async/await? Let's get started!

https://medium.freecodecamp.org/avoiding-the-async-await-hell-c77a0fb71c4c
https://github.com/vkarpov15/mastering-async-await-issues

Async/Await: The Good Parts

The async and await keywords are new additions to JavaScript as part of the 2017 edition of the
language specification. The async keyword modifies a function, either a normal function() {}
or an arrow function () => {},to mark it as an async function. In an async function, you can use
the await keyword to pause the function's execution until a promise settles. In the below function,
the await keyword pauses the function's execution for approximately 1 second.

Example 1.1

async function test() {

await new Promise(resolve => setTimeout(() => resolve(), 1000));
console.log('Hello, World!");

test();

You can use the await keyword anywhere in the body of an async function. This means you can
use await in if statements, for loops, and try/catch blocks. Below is another way to pause
an async function's execution for about 1 second.

Example 1.2

async function test() {

for (let i = 0; 1 < 10; ++i) {
await new Promise(resolve => setTimeout(resolve, 100));

¥
console.log('Hello, World!");

test();

There is one major restriction for using await: you can only use await within the body of a
function that's marked async. The following code throws a SyntaxError.

Example 1.3

function test() {
const p = new Promise(resolve => setTimeout(resolve, 1000));

await p;

test();

