
Async/Await Internals
Promises are the fundamental tool for integrating with async/await. Now that you've seen how
promises work from the ground up, it's time to go from the micro to the macro and see what
happens when you await on a promise. Even though async functions are �at like synchronous
functions, they're as asynchronous as the most callback-laden banana code under the hood.

As you might have already guessed, await makes JavaScript call then() under the hood.

const p = {
 then: onFulfilled => {
 // Prints "then(): function () { [native code] }"
 console.log('then():', onFulfilled.toString());
 // Only one entry in the stack:
 // Error
 // at Object.then (/examples/chapter3.test.js:8:21)
 console.log(new Error().stack);
 onFulfilled('Hello, World!');
 }
};

console.log(await p); // Prints "Hello, World!"

The await keyword causes JavaScript to pause execution until the next iteration of the event
loop. In the below code, the console.log() after the await runs after the ++currentId code,
even though the increment is in a callback. The await keyword causes the async function to
pause and then resume later.

const startId = 0;
let currentId = 0;
process.nextTick(() => ++currentId);
const p = {
 then: onFulfilled => {
 console.log('then():', currentId - startId); // "then(): 1"
 onFulfilled('Hello, World!');
 }
};

console.log('Before:', currentId - startId); // "Before: 0"
await p;
console.log('After:', currentId - startId); // "After: 1"

Example 3.1

Example 3.2

29

Notice that the then() function runs on the next tick, even though it is fully synchronous. This
means that await always pauses execution until at least the next tick, even if the thenable is not
async.The same thing happens when the awaited promise is rejected. If you call
onRejected(err) , the await keyword throws err in your function body.

const startId = 0;
let currentId = 0;
process.nextTick(() => ++currentId);
const p = {
 then: (onFulfilled, onRejected) => {
 console.log('then():', currentId - startId); // "then(): 1
 return onRejected(Error('Oops!'));
 }
};

try {
 console.log('Before:', currentId - startId); // "Before: 0"
 await p;
 console.log('This does not print');
} catch (error) {
 console.log('After:', currentId - startId); // "After: 1"
}

await vs return

Recall that return in an async function resolves the promise that the async function returns. This
means you can return a promise. What's the difference between await and return? The
obvious answer is that, when you await on a promise, JavaScript pauses execution of the async
function and resumes later, but when you return a promise, JavaScript �nishes executing the
async function. JavaScript doesn't "resume" executing the function after you return .

The obvious answer is correct, but has some non-obvious implications that tease out how await
works. If you wrap await p in a try/catch and p is rejected, you can catch the error. What
happens if you instead return p?

async function test() {
 try {
 return Promise.reject(new Error('Oops!'));
 } catch (error) { return 'ok'; }
}
// Prints "Oops!"
test().then(v => console.log(v), err => console.log(err.message));

Example 3.3

Example 3.4

30

